Multi-Feature Input Deep Forest for EEG-Based Emotion Recognition
نویسندگان
چکیده
منابع مشابه
EEG Based Emotion Identification Using Unsupervised Deep Feature Learning
Capturing user’s emotional state is an emerging way for implicit relevance feedback in information retrieval (IR). Recently, EEGbased emotion recognition has drawn increasing attention. However, a key challenge is effective learning of useful features from EEG signals. In this paper, we present our on-going work on using Deep Belief Network (DBN) to automatically extract highlevel features from...
متن کاملSpeech Emotion Recognition Using Scalogram Based Deep Structure
Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...
متن کاملEEG-based Emotion Recognition pdfsubject
In the area of human-computer interaction information about the emotional state of a user becomes more and more important. For instance, this information could be used to make communication with computers more human-like or to make computer learning environments more effective. This thesis proposes an emotion recognition system from electroencephalographic (EEG) signals. Emotional states were i...
متن کاملEEG-Based Emotion Recognition during Music Listening
In Music Emotion Research, the goal is to quantify and explain how music influences our emotional states. Scientists realize that human brain is relevant to emotion, and it leads to the study of human emotion by capturing information from brain. Electroencephalogram (EEG) is an efficient tool to capture brainwave. This research proposes a framework to recognize human emotions during music liste...
متن کاملRevealing Critical Channels and Frequency Bands for EEG-based Emotion Recognition with Deep Belief Network
For EEG-based emotion recognition tasks, there are many irrelevant channel signals contained in multichannel EEG data, which may cause noise and degrade the performance of emotion recognition systems. In order to tackle this problem, we propose a novel deep belief network (DBN) based method for examining critical channels and frequency bands in this paper. First, we design an emotion experiment...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Neurorobotics
سال: 2021
ISSN: 1662-5218
DOI: 10.3389/fnbot.2020.617531